Abstract

The distributed parameter governing equations of a cantilever beam with a tip mass subjected to principal parametric excitation are developed using a generalized Hamilton's principle. Using a Galerkin's discretization scheme, the discretized equation for the first mode is developed for simpler representation assuming linear and nonlinear boundary conditions. The discretized governing equation considering the nonlinear boundary conditions assumes a simpler form. We solve the distributed parameter and discretized equations separately using the method of multiple scales. Through comparison with the direct approach, we show that accounting for the nonlinear boundary conditions boundary conditions is important for accurate prediction in terms of type of bifurcation and response amplitude.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.