Abstract

Background Rare breeds represent a valuable resource for future market demands. These populations are usually well-adapted, but their low census compromises the genetic diversity and future of these breeds. Since improvement of a breed for commercial traits may also confer higher probabilities of survival for the breed, it is important to achieve good responses to artificial selection. Therefore, efficient genetic management of these populations is essential to ensure that they respond adequately to genetic selection in possible future artificial selection scenarios. Scenarios that maximize the maximum genetic variance in a unique population could be a valuable option. The aim of this work was to study the effect of the maximization of genetic variance to increase selection response and improve the capacity of a population to adapt to a new environment/production system.ResultsWe simulated a random scenario (A), a full-sib scenario (B), a scenario applying the maximum variance total (MVT) method (C), a MVT scenario with a restriction on increases in average inbreeding (D), a MVT scenario with a restriction on average individual increases in inbreeding (E), and a minimum coancestry scenario (F). Twenty replicates of each scenario were simulated for 100 generations, followed by 10 generations of selection. Effective population size was used to monitor the outcomes of these scenarios. Although the best response to selection was achieved in scenarios B and C, they were discarded because they are unpractical. Scenario A was also discarded because of its low response to selection. Scenario D yielded less response to selection and a smaller effective population size than scenario E, for which response to selection was higher during early generations because of the moderately structured population. In scenario F, response to selection was slightly higher than in Scenario E in the last generations.ConclusionsApplication of MVT with a restriction on individual increases in inbreeding resulted in the largest response to selection during early generations, but if inbreeding depression is a concern, a minimum coancestry scenario is then a valuable alternative, in particular for a long-term response to selection.

Highlights

  • Rare breeds represent a valuable resource for future market demands

  • Our results show that the highest genetic response was achieved in Scenarios B and C because they retained more genetic variance

  • Bennewitz and Meuwissen [4] showed that maximum variance total (MVT) and the Eding et al [23] core set method were similar to some extent, but the MVT method prioritizes the conservation of breeds that show large differences in the population mean of the simulated quantitative trait

Read more

Summary

Introduction

Rare breeds represent a valuable resource for future market demands These populations are usually well-adapted, but their low census compromises the genetic diversity and future of these breeds. Scenarios that maximize the maximum genetic variance in a unique population could be a valuable option. The aim of this work was to study the effect of the maximization of genetic variance to increase selection response and improve the capacity of a population to adapt to a new environment/production system. Preserving genetic diversity in a population is one of the main objectives for a breed conservation program. It guarantees availability of genetic variation in case the population needs to adapt to a new environment/production system, increasing its survival. Even in populations under conservation programs, where the objective is to maximize genetic

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call