Abstract
<strong class="journal-contentHeaderColor">Abstract.</strong> We present a new approach to understand the interactions among different chemical and biological processes modelled in environmental reactive transport models (RTMs) and explore how the parameterisation of these processes influences the results of multi-component RTMs. We utilize a previously published RTM consisting of 20 primary species, 20 secondary complexes, 17 mineral reactions and 2 biologically-mediated reactions which describes bio-stimulation using sediment from a contaminated aquifer. We choose a subset of the input parameters to vary over a range of values. The result is the construction of a new dataset that describes the model behaviour over a range of environmental conditions. Using this dataset to train a statistical model creates an emulator of the underlying RTM. This is a condensed representation of the original RTM that facilitates rapid exploration of a broad range of environmental conditions and sensitivities. As an illustration of this approach, we use the emulator to explore how varying the boundary conditions in the RTM describing the aquifer impacts the rates and volumes of mineral precipitation. A key result of this work is the recognition of an unanticipated dependency of pyrite precipitation on pCO<sub>2</sub> in the injection fluid due to the stoichiometry of the microbially-mediated sulphate reduction reaction. This complex relationship was made apparent by the emulator, while the underlying RTM was not specifically constructed to create such a feedback. We argue that this emulation approach to sensitivity analysis for RTMs may be useful in discovering such new coupled sensitives in geochemical systems and for designing experiments to optimise environmental remediation. Finally, we demonstrate that this approach can maximise specific mineral precipitation or dissolution reactions by using the emulator to find local maxima, which can be widely applied in environmental systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.