Abstract

The efficacy of radiation treatment depends upon local oxygen concentration. We postulated that the variability in responsiveness of tumor xenografts to a fixed dose of radioimmunotherapy might be related to the tumor pO2 at the time that radioimmunotherapy was administered. We evaluated the growth of xenografts of CALU-3 tumors, a non-small cell lung carcinoma, in response to an 8.9-MBq dose of 131I-RS-7-anti-EGP-1 and correlated tumor growth rate with initial tumor pO2 measured by EPR oximetry. The greatest growth delay in response to radioimmunotherapy had the highest initial pO2, and the fastest-growing tumors had the lowest initial pO2. We then determined the dynamic effect of radioimmunotherapy on tumor pO2 by serial measurements of pO2 for 35 days after radioimmunotherapy. This information could be important for ascertaining the likelihood that a tumor will respond to additional doses as part of a multiple dose scheme. Serial tumor pO2 measurements may help identify a window of opportunity when the surviving tumor regions will be responsive to a second round of radioimmunotherapy or a second therapeutic modality such as chemotherapy or an anti-vascular agent. After radioimmunotherapy, there was an increase in tumor pO2 followed by a decrease below initial levels in most mice. Thus defined times may exist when a tumor is more or less radiosensitive after radioimmunotherapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call