Abstract

BackgroundDue to the effects of climate change, winter sport enthusiasts will be increasingly forced to stay at higher altitudes. High altitude (HA) environmental factors such as cold temperature, physical exertion, and hypoxia with subsequent hypocapnia due to hyperventilation have been shown to induce bronchoconstriction. With bronchial asthma being highly prevalent, asthmatics also will be increasingly exposed to HA environment and might experience increasing symptoms. MethodsWe analysed the effects of HA factors at around 2600 m a.s.l. (metres above sea level) on lung function in mild seasonal asthmatics while they were routinely off (January) and on (March, after start of lowland pollen season) low-dose inhaled corticosteroid (ICS) treatment (n = 10), and matched healthy controls (n = 11). ResultsWithout inhaled corticosteroid (ICS) treatment mean FEV1 in asthmatics was 230 ml lower after exercise at HA compared to low altitude (LA, p < 0.05), while in healthy controls there was no significant difference. This decrease was mainly induced by cold and exercise at HA. During ICS treatment, this decrease was prevented. Methacholine response was reduced at HA compared to LA. ConclusionsThe decrease of FEV1 in response to a combination of hypoxia, cold, and exercise is prevented by ICS treatment in mild, seasonal asthmatics. However, the FEV1 response to high altitude factors was overall small.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call