Abstract

BackgroundFurosemide responsiveness (FR) is determined by urine output after furosemide administration and has recently been evaluated as a furosemide stress test (FST) for predicting severe acute kidney injury (AKI) progression. Although a standardized furosemide dose is required for FST, variable dosing is typically employed based on illness severity, including renal dysfunction in the clinical setting. This study aimed to evaluate whether FR with different furosemide doses can predict AKI progression. We further evaluated the combination of an AKI biomarker, plasma neutrophil gelatinase-associated lipocalin (NGAL), and FR for predicting AKI progression.ResultsWe retrospectively analyzed 95 patients who were treated with bolus furosemide in our medical–surgical intensive care unit. Patients who had already developed AKI stage 3 were excluded. A total of 18 patients developed AKI stage 3 within 1 week. Receiver operating curve analysis revealed that the area under the curve (AUC) values of FR and plasma NGAL were 0.87 (0.73–0.94) and 0.80 (0.67–0.88) for AKI progression, respectively. When plasma NGAL level was < 142 ng/mL, only one patient developed stage 3 AKI, indicating that plasma NGAL measurements were sufficient to predict AKI progression. We further evaluated the performance of FR in 51 patients with plasma NGAL levels > 142 ng/mL. FR was associated with AUC of 0.84 (0.67–0.94) for AKI progression in this population with high NGAL levels.ConclusionsAlthough different variable doses of furosemide were administered, FR revealed favorable efficacy for predicting AKI progression even in patients with high plasma NGAL levels. This suggests that a combination of FR and biomarkers can stratify the risk of AKI progression in a clinical setting.

Highlights

  • Furosemide responsiveness (FR) is determined by urine output after furosemide administration and has recently been evaluated as a furosemide stress test (FST) for predicting severe acute kidney injury (AKI) progression

  • We retrospectively evaluated the combination of AKI biomarkers and urine output in response to the administration of bolus furosemide for stratifying the risk of AKI progression in critically ill patients

  • When weight-adjusted FR is defined as the total urine output in 2 h divided by furosemide dose per kilogram body weight, weight-adjusted FR showed a significant difference between the groups (Additional file 1: Figure S1)

Read more

Summary

Introduction

Furosemide responsiveness (FR) is determined by urine output after furosemide administration and has recently been evaluated as a furosemide stress test (FST) for predicting severe acute kidney injury (AKI) progression. We further evaluated the combination of an AKI biomarker, plasma neutrophil gelatinase-associated lipocalin (NGAL), and FR for predicting AKI progression. Acute kidney injury (AKI) is highly prevalent in an intensive care unit (ICU) and is associated with significant morbidity and mortality [1,2,3]. Multiple biomarkers, such as plasma neutrophil gelatinase-associated lipocalin (NGAL), L-type fatty acid binding protein (L-FABP), interleukin (IL)-18, and tissue inhibitor of metalloproteinases (TIMP-2)/insulin-like growth factor-binding protein 7 (IGFBP7), have been developed [10,11,12,13,14]. Urinary NGAL and L-FABP can reportedly discriminate between prerenal and renal AKI [15,16,17] and TIMP-2/IGFBP7 can predict AKI progression [18, 19]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call