Abstract
In our recent paper [J. Chem. Phys.128, 041102 (2008)], we reported a femtosecond time-resolved laser spectroscopic study of the electron transfer reaction of CCl4 in liquid ethanol. Our results provide direct evidence of the resonant dissociative electron transfer (RDET) of the presolvated electron to CCl4, and indicate that RDET can be an efficient process in an aqueous environment. In a recent Comment, the author argues that the relevance of diethanolamine (DEA) induced destruction of chlorofluorocarbons (CFCs) in the polar stratosphere as a possible pathway for chemical ozone destruction should not be a motivation for further studies of DEA on CFC molecules, as no correlation is observed between polar chemical ozone loss and cosmic ray activity. Here, we show that this claim is misleading: it is made by using inconclusive and ambiguous data while ignoring pronounced and well-documented data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.