Abstract
Response time (RT) is a commonly used measure of cognitive performance, which is usually characterized as stochastic. However, useful information may be hidden in the apparently random fluctuations of RT. Dynamical systems analysis techniques allow an exploration of the alternative hypothesis that RT fluctuations are deterministic, albeit in a complex manner. We applied careful task construction and noise-reduction and surrogate series tests to show that RT series from a forced-pace serial response-time task have low-dimensional chaotic characteristics. In Experiment 1, 80% of subjects' filtered RT series had low dimensionality, sensitive dependence on initial conditions, spectra close to 1/f, and stable attractor geometry across sessions. In Experiment 2, we showed that the size of the inter-stimulus interval (ISI) determined the number of subjects with low-dimensional chaotic series. A small ISI caused 100% of subjects to respond in the chaotic regime, whereas only 25% had a low-dimensional chaotic RT component when the ISI was large. We argue that demanding task requirements cause a reduction in the dimensionality of the dynamics, producing RT fluctuations that may reflect a response strategy for controlling RT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Quarterly Journal of Experimental Psychology Section A
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.