Abstract
In this work, we use the transient time correlation function (TTCF) method to evaluate the response of a fluid confined in a nanopore and subjected to shear. The shear is induced by the movement of the boundaries in opposite directions and is made of moving atoms. The viscous heat generated inside the pore is removed by a thermostat applied exclusively to the atomic walls, so as to leave the dynamics of the fluid purely Newtonian. To establish a link with nonlinear response theory and apply the TTCF formalism, dissipation has to be generated inside the system. This dissipation is then time correlated with a phase variable of interest (e.g., pressure) to obtain its response. Until recently, TTCF has been applied to homogeneous fluids whose equations of motion were coupled to a mechanical field and a thermostat. In our system dissipation is generated by a boundary condition rather than a mechanical field, and we show how to apply TTCF to these realistic confined systems, comparing the shear stress response so obtained with that of homogeneous systems at equivalent state points.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.