Abstract

AbstractResponse surface methodology (RSM) was used to analyse the effects of polyvinyl alcohol (PVOH) and calcium carbonate (CaCO3) on the physical and mechanical properties (radial expansion ratio, bulk density, compressibility and spring index) of a biodegradable cushioning extrudate. A rotatable central‐composite design (CCD) was used to develop models for the objective responses. The experiments were run at 125°C with a feed rate of 27.8 l/h, screw speed of 215 r.p.m. and die diameter of 3.92 mm. Responses were most affected by changes in PVOH levels and to a lesser extent by CaCO3 levels. Individual contour plots of the different responses were overlaid. An optimum radial expansion ratio of 3.39, bulk density of 0.065 (g/cm3), compressibility of 32.27(N), and spring index of 0.906 were identified at 36% PVOH and 5% CaCO3. Copyright © 2005 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.