Abstract

A non-linear mathematical model, Planing Hull Motion Program (PHMP) has been developed based on strip theory to predict the heave and pitch motions of planing hull at high speed in head seas. PHMP has been validated against published model test data. For various combinations of design parameters, PHMP can predict the heave and pitch motions and bow and center of gravity accelerations with reasonable accuracy at planing and semi-planing speeds. This paper illustrates an application of modern statistical design of experiment (DOE) methodology to develop simple surrogate models to assess planing hull motions in a vertical plane (surge, heave and pitch) in calm water and in head seas. Responses for running attitude (sinkage and trim) in calm water, and for heave and pitch motions and bow and center of gravity accelerations in head seas were obtained from PHMP based on a multifactor uniform design scheme. Regression surrogate models were developed for both calm water and in head seas for each of the relevant responses. Results showed that the simple one line regression models provided adequate fit to the generated responses and provided valuable insights into the behaviour of planing hull motions in a vertical plane. The simple surrogate models can be a quick and useful tool for the designers during the preliminary design stages.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call