Abstract

ABSTRACTElectrolyzed oxidizing water has been estimated that it has strong bactericidal activity and has been widely used as a disinfectant for inactivating microbial organisms. The combined effects of temperature (15–35C), chlorine concentration of electrolyzed oxidizing water (30–70 ppm) and treatment time (1–5 min) on the reduction of Listeria monocytogenes in lettuce were investigated. Reductions of 1.39–2.79 log10 cfu/g were observed in different combinations of the three factors. Also, a quadratic equation for L. monocytogenes inactivation kinetic was developed by multiple regression analysis using response surface methodology. The predicted values were shown to be significantly in good agreement with experimental values because the adjusted determination coefficient () was 0.9578 and the level of significance was P < 0.0001. Besides, average mean deviation (E%), bias factor (Bf) and accuracy factor (Af), which are validation indicators of the model were 0.0218, 1.0003 and 1.0220, respectively. Thus, predicted model showed a good correlation between the experimental and predicted values, indicating success at providing reliable predictions of L. monocytogenes growth in lettuce.PRACTICAL APPLICATIONSElectrolyzed oxidizing water is an important sanitizer, and nowadays it has been widely used in food industry. Lettuce is regarded as a “healthier” food, which is one of the most popular vegetables consumed, whereas many outbreaks caused by L. monocytogenes have been reported until now. According to the model developed in this study, inactivation of L. monocytogenes in lettuce treated with EO water could be predicted by inputting a certain group of environmental factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.