Abstract

This work investigates both batch and optimization studies of adsorption of Remazol Brilliant Blue Reactive (RBBR) dye onto activated carbon prepared from periwinkle shells (PSAC). The effects of three preparation variables: CO2 activation temperature, CO2 activation time, and KOH: char impregnation ratio (IR) were studied using Response Surface Modeling (RSM). Based on the central composite design (CCD), a quadratic model and two-factor interaction models (2FI) were developed to correlate the three preparation variables to the two responses: RBBR dye removal and PSAC yield. The optimum conditions for preparing PSAC for adsorption of RBBR dye were found as follows: CO2 activation temperature of 811°C, CO2 activation time of 1.7 h and IR of 2.95, which resulted in 82.76% of RBBR dye removal and 35.83% of PSAC yield. Experimental results obtained agreed satisfactorily well with the model predictions. The activated carbon prepared under optimum conditions was mesoporous with BET surface area of 1894 m2/g, total pore volume of 1.107 cm3/g and average pore diameter of 2.32 nm. The surface morphology and functional groups of PSAC were respectively determined from the scanning electron microscopy (SEM) and Fourier transform infrared analysis (FTIR).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.