Abstract

Response surface methodology (RSM), based on a 22 full factorial design, evaluated the moisture effects in recovering xylose by diethyloxalate (DEO) hydrolysis. Experiments were carried out in laboratory reactors (10mL glass ampoules) containing corn stover (0.5g) properly ground. The ampoules were kept at 160°C for 90min. Both DEO concentration and corn stover moisture content were statistically significant at 99% confidence level. The maximum xylose recovery by the response surface methodology was achieved employing both DEO concentration and corn stover moisture at near their highest levels area. We amplified this area by using an overlay plot as a graphical optimization using a response of xylose recovery more than 80%. The mathematical statistical model was validated by testing a specific condition in the satisfied overlay plot area. Experimentally, a maximum xylose recovery (81.2%) was achieved by using initial corn stover moisture of 60% and a DEO concentration of 4%w/w. The mathematical statistical model showed that xylose recovery increases during DEO corn stover acid hydrolysis as the corn stover moisture level increases. This observation could be important during the harvesting of corn before it is fully dried in the field. The corn stover moisture was an important variable to improve xylose recovery by DEO acid hydrolysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call