Abstract
The objective of this research was to study an effective adsorbent for removing azithromycin (AZT) from industrial wastewater. AZT is an antibiotic used for many diseases remedy, but it is a pollutant to our environment; therefore, its residual should be removed from wastewater. The mesoporous SBA-15 silica as an efficient adsorbent was prepared by the hydrothermal method. The surface of mesoporous SBA-15 plays a significant role in the removal process; therefore, the characterization of the adsorbent was accomplished by several techniques. The batch system has been used, and the effect of four essential variables: pH (3-10), drug concentration (20-200 mg L−1), sorbent weight (0.2-2 g L−1), and temperature (20-40 °C) were investigated on the AZT removal efficiency by response surface methodology (RSM). The isotherm results were found to be in proper compliance with the isotherm model of Freundlich. In the kinetics part of this study, the experimental outcomes were fitted to the equation model of pseudo-second-order. The calculation of thermodynamic parameters shows that the removal process is spontaneous and endothermic. Upon the results, the vast surface area, the active functional groups, reusability, stability, and inexpensively make the mesoporous SBA-15 a suitable candidate for removal of AZT and similar antibiotics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Environmental Science and Health, Part A
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.