Abstract

The prevalent presence of antibiotic compounds (e.g., chloramphenicol [CAP]) in wastewater and effluents without pretreatment can bring adverse impacts on human and animals; therefore, the remediation of these substrates is emergently essential. To synthesize the novel mesoporous carbon for chloramphenicol remediation, we pyrolyzed a species of copper-based metal-organic framework, namely Cu 3 (BTC) 2 (BTC = 1,3,5-benzenetricarboxylic acid), at 700 °C, characterized by several physical analytical techniques, such as X-ray powder diffraction, scanning/transmission electron microscopy, and N 2 adsorption/desorption isotherm measurement. The procedure to optimize the optimum conditions for the removal of CAP was conducted based on investigating three factors including concentration (1.6–18.4 mg/L), adsorbent dosage (0.08–0.92 g/L), and pH (2.6–9.4). As a consequence, up to 87.6% of chloramphenicol could be removed from water under these conditions. Moreover, the effects of contact time (0–120 min) and concentration (10–40 mg/L), as well as other adsorption kinetic and isotherm models, were vigorously studied. With a relatively high surface area (78.8 m 2 /g), many functional groups on the surface (2.44 mmoL/g for acidic and base groups), and high maximum adsorption capacity (37.2 mg/g), the mesoporous carbon from Cu 3 (BTC) 2 can be used as an efficient adsorbent for CAP removal from wastewater. • The novel CMC700 was produced from the pyrolysis of Cu 3 (BTC) 2 metal-organic framework. • Response surface methodology was used to optimize chloramphenicol adsorption. • Kinetic and isotherm models for chloramphenicol adsorption over CMC700 were studied. • The maximum adsorption capacity was 37.2 mg/g.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.