Abstract

In this study and for the first time, aligned nanofibers were produced from low molecular weight polyvinyl butyral. Using response surface methodology, the preparation condition of aligned nanofiber was optimized in terms of nanofiber diameter and its structural stability. Central composite design as a response surface methodology was employed and the effects of process variables and their influence on nanofiber diameter were investigated. Based on a statistical analysis, the use of a model, which was used to determine the nanofiber diameter, proved to be successful because of its low probability value (0.0073) and high correlation coefficient (0.9619). A high-speed cylinder collector was used to fabricate aligned polyvinyl butyral nanofibers. The optimum conditions of 17.5 kV voltage, 10 cm collector distance, 13% solution concentration, and 2100 r/min rotational speed were obtained from experiments. The least diameter of 158.6 nm along with a stable structure was determined for polyvinyl butyral nanofiber prepared under the optimum conditions. An aligned polyvinyl butyral nanoweb was applied on the mid-layer of glass-phenolic laminated composites as an interlaminar reinforcement. The fracture behavior of the laminates was determined by end-notched flexure tests. Excellent toughening property which was observed for the aligned polyvinyl butyral nanofibers caused the mode-II fracture toughness and its maximum force to increase by 25.2 and 40.8%, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call