Abstract
The numerical and statistical investigations of Al2O3-TiO2-Cu/water ternary hybrid nanofluid in MHD stagnation-point flow over a permeable radially shrinking disk are conducted in the current study. Thermal radiation and convective boundary condition are also considered. The numerical investigation of the governing equations and boundary conditions is carried out using the bvp4c solver in Matlab. In this study, the wall shear stress produced by ternary hybrid nanofluid is 31.89% and 22.65% higher than the nanofluid and hybrid nanofluid, respectively. At the same time, the heat transfer rate of the ternary hybrid nanofluid is about 28.39% and 25.46% higher than the nanofluid and hybrid nanofluid, respectively. In addition, the increment of suction and magnetic parameters raises the local skin friction coefficient and Nusselt number. Meanwhile, the augmentation of the thermal radiation parameter and Biot number improves the temperature profile and local Nusselt number. With desirability of 99.75%, the local Nusselt number is maximized at 0.938137 when Rd = 0.7 , Bi = 0.7 , Ec = 0.003 , and M = 0.5 .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.