Abstract

Response surface methodology was used to optimize tea polyphenols-loaded chitosan nanoclusters preparation conditions, including carboxymethyl chitosan concentration, chitosan hydrochloride concentration and amount of tea polyphenols. The responses particle size and entrapment efficiency of nanoclusters were studied. The optimum conditions of carboxymethyl chitosan concentration, chitosan hydrochloride concentration and amount of tea polyphenols were found to be 3.63, 1.19 and 10.94 mg/mL, respectively. The optimized particle size was 301 nm, and entrapment efficacy of nanoclusters was added up to 83.7%. The results demonstrated that Box–Behnken design methodology was an effective way to obtain the optimal formulation of tea polyphenols-loaded chitosan nanoclusters, and the nanoclusters complexation synthesizing through ionic gelation between carboxymethyl chitosan and chitosan hydrochloride was good biomaterials, which could be successfully used to encapsulate tea polyphenols.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.