Abstract

Microcapsules of rice antioxidant peptide with enhanced stability were prepared by piercing method using sodium alginate as the wall material. Operating parameters such as mass ratio of core to wall material, sodium alginate concentration, temperature, calcium chloride concentration, and sucrose fatty acid ester concentration were optimized by response surface methodology based on the microencapsulation efficiency of rice antioxidant peptide. The prepared microcapsules were subjected to storage tests and electron microscopic observation. The results showed that the optimal experimental conditions were 0.3:1, 1.4%, 50 ℃, 1.8%, and 0.26% for mass ratio of core to wall material, sodium alginate concentration, temperature, calcium chloride concentration, and sucrose fatty acid ester concentration, respectively. Experiments under these optimal conditions led to a microencapsulation efficiency of 81.24%, showing a relative error of only 0.6% compared to the expected value(81.75%). Storage test revealed that the stability of microencapsulated rice antioxidant peptide was improved obviously. Scanning electron microscopy images showed that the surface morphology and structure of microencapsulated rice antioxidant peptide were intact. Therefore, microencapsulation is a good way to protect the activity of antioxidant peptide. These results could provide references for actual production of rice antioxidant peptide microcapsules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.