Abstract

Background: Toxic heavy metals, such as lead, are widely used in industry and may cause serious health problems and ecological hazards for living organisms. Objectives: The current study aimed to investigate the removal efficiency of lead by Lactobacillus strains using a methodological approach. Methods: After selecting the bacteria with the maximum metals removal ability, experiments were conducted according to (i) the Plackett-Burman design (Minitab18 program) to screen several significant process factors and (ii) Central Composite Design (Design-Expert 11.1.2.0 program) to find out the optimum process conditions for the maximum capacity of metal removal efficiency. Results: The optimum pH, metal, and bacterial concentration were 6.76, 391 mg.L-1, and 4.60 g.L-1 for lead removal ability of L. acidophilus ATCC4356. A quadratic model was developed to correlate the variables with removal efficiency. According to the results, this model was not statistically significant (P > 0.05). Conclusions: The experimental removal efficiencies at the optimum condition for lead by L. acidophilus ATCC4356 (73.9%) were consistent with the predicted values. Consequently, due to their appreciate efficiency and the lower cost of the lead removal ability, these two bacteria may be a candidate as good biosorbents. The results also confirmed that the Response Surface Methodology is an appropriate methodology for modeling of removal efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.