Abstract
In this work, a response surface analysis is carried out on an experimental setup of a combined two-phase flow thermosyphon and thermoelectric generator (TEG) system. Three-level Box-Behnken response surface method is adopted for the design of experiments, and analysis of variance is carried out to gauge the contribution of operating parameters on various performance parameters. Effects of operating parameters such as working pressure, filling ratio, evaporator length, and evaporator temperature are studied. The performance of the system itself is gauged concerning the maximum power obtained, open circuit voltage and short circuit current. With an increase in vacuum pressure and evaporator temperature, performance parameters are found to increase. However, performance parameters under the influence of filling ratio and evaporator length first decrease and then increase due to uneven variation in evaporation rate of working fluid. Experiments also reveal that the performance of the thermosyphon-assisted TEG system is mainly governed by pressure and evaporator temperature, whereas filling ratio and evaporator length have relatively lesser influence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.