Abstract
Jatobá-do-cerrado fruit shells, archetypical of lignocellulosic-based biomass, were used as an adsorbent to remove crystal violet (CV) and methylene blue (MB) from water. The adsorbent was characterized using various techniques, and kinetic studies showed dye adsorption followed second-order kinetics. An experimental design investigated the effects of pH and temperature on removal efficiency, with a quadratic model fitting the data best. The results suggest pH influences MB's adsorption capacity more than temperature and at 25 °C and pH 8, MB had a desirability value of 0.89, with 95 % removal efficiency. For CV, temperature had a greater influence, with a desirability value of 0.874 at 25 °C and pH 10, and 95 % removal efficiency. Adsorption isotherm studies revealed maximum adsorption capacities of 123.0 mg·g−1 and 113.0 mg·g−1 for CV and MB, respectively. Experimental thermodynamic parameters indicated an endothermic and spontaneous process which it was supported by quantum chemistry calculations. The protocols developed confirmed the potential for adsorbing CV and MB dyes in water, achieving over 73.1 and 74.4 mg g−1 dyes removal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.