Abstract

In this paper, a new response spectrum method is proposed for high-cycle fatigue damage assessment of a linear multi-degree-of-freedom system subjected to random base acceleration. Mode damage response can be accessed by separating the modal participation factor and stress mode from the contribution of a mode to the total damage, assessed by the Single Moment method. The fatigue damage response spectrum is defined as the family of curves formed by the mode damage response with the variation of the frequency and modal damping ratio, which is irrelevant to the spatial characteristics of the load and structure. Three calculation formats of the response spectrum method are formed by considering different cross-correlation hypotheses of each mode (i.e. the Complete Quadratic Combination format, the Square Root of the Sum of Squares format, and the Modified Square Root of the Sum of Squares format). The proposed method has higher computational efficiency than other frequency-domain methods because of avoiding the calculation of power spectral density function and spectral moment of stress responses. The spatial and frequency information of the structure are decoupled from each other in the implementation, which can effectively reduce the computational cost of reanalysis. Compared to the result of the Dirlik method (self-compiled program and MSC.Patran/Nastran) and the Single Moment method, the correctness and efficiency of the proposed method are verified, and the influences of the material and load spectrum form on the response spectrum method are investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call