Abstract

The neurophysiological properties of neurons sensitive to TMJ movement (TMJ neurons) in the trigeminal sensory complex (Vcomp) during passive movement of the isolated condyle were examined in 46 rabbits. Discharges of TMJ neurons from the rostral part of the Vcomp were recorded with a microelectrode when the isolated condyle was moved manually and with a computer-regulated mechanostimulator. A total of 443 neurons responding to mechanical stimulation of the face and oral cavity were recorded from the brainstem. Twenty-one TMJ neurons were detected rostrocaudally from the dorsal part of the trigeminal principal sensory nucleus (NVsnpr), subnucleus oralis of the trigeminal spinal nucleus, and reticular formation surrounding the trigeminal motor nucleus. Most of the TMJ neurons were located in the dorso-rostral part of the NVsnpr. Of the TMJ units recorded, 90 % were slowly adapting and 26 % had an accompanying resting discharge. The majority (86 %) of the TMJ units responded to the movement of the isolated condyle in the anterior and/or ventral directions, and half were sensitive to the condyle movement in a single direction. The discharge frequencies of TMJ units increased as the condyle displacement and constant velocity (5 mm/s) increased within a 5-mm anterior displacement of the isolated condyle. Based on these results, we conclude that sensory information is processed by TMJ neurons encoding at least joint position and displacement in the physiological range of mandibular displacement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call