Abstract

ABSTRACTWe present a novel approach for calculating the static dielectric permittivity profile of a liquid–liquid interface (LLI) from molecular dynamics simulations. To obtain well-defined features, comparable to those observed at solid–liquid interfaces, we find it essential to reference to the instantaneous liquid–liquid interface rather than the more commonly used average Gibbs interface. We provide a coarse-grained approach for the practical definition of the instantaneous interface and present numerical results for the prototypical water/1,2-dichloroethane system. These results show that the parallel components of the dielectric permittivity tensor can be accurately extracted. In contrast, the perpendicular component does not converge to the correct bulk value at large distances from the LLI, highlighting a flaw in the regularly applied coarse-graining procedure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call