Abstract

Response profiling using shotgun proteomics for establishing global metallodrug mechanisms of action in two colon carcinoma cell lines, HCT116 and SW480, has been applied and evaluated with the clinically approved arsenic trioxide. Surprisingly, the complete established mechanism of action of arsenic trioxide was observed by protein regulations in SW480, but not HCT116 cells. Comparing the basal protein expression in the two cell lines revealed an 80 % convergence of protein identification, but with significant expression differences, which in turn seem to affect the extent of protein regulation. A clear-cut redox response was observed in SW480 cells upon treatment with arsenic, but hardly in HCT116 cells. Response profiling was then used to investigate four anti-cancer metallodrugs (KP46, KP772, KP1339 and KP1537). Proteome alterations were mapped to selected functional groups, including DNA repair, endocytosis, protection from oxidative stress, protection from endoplasmatic reticulum (ER) stress, cell adhesion and mitochondrial function. The present data suggest that knowledge of the mechanism of action of anti-cancer metallodrugs and improved patient stratification strategies are imperative for the design of clinical studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.