Abstract
To calculate the probability density function of the response of a random acoustic field, a change-of-variable perturbation stochastic finite element method (CVPSFEM), which integrates the perturbation stochastic finite element method (PSFEM) and the change-of-variable technique in a unified form, is proposed. In the proposed method, the response of a random acoustic field is approximated as a linear function of the random variables based on a first order stochastic perturbation analysis. According to the linear relationship between the response and the random variables, the formal expression of the probability density function of the response of a random acoustic field is obtained by the change-of-variable technique. The numerical examples on a two-dimensional (2D) acoustic tube and a three-dimensional (3D) acoustic cavity of an automobile cabin verify the accuracy and efficiency of the proposed method. Hence, the proposed method can be considered as an effective method to quantify the effects of the parametric randomness of a random acoustic field on the sound pressure response.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.