Abstract

Abstract Precipitation pulses are important in controlling ecological processes in semiarid ecosystems. The effects of seasonal and intermittent precipitation events on net water vapor and CO2 fluxes were determined for crested wheatgrass (Agropyron desertorum), juniper (Juniperus osteosperma), and sagebrush (Artemisia tridentata) ecosystems using eddy covariance measurements. The measurements were made at Rush Valley, Utah, in the northern Great Basin of the United States. Data were evaluated during the growing seasons of 2002 and 2003. Each of these communities responds to precipitation pulses in all seasons, but these responses vary among season and ecosystem, and differ for water vapor and CO2. The degree and direction of response (i.e., net uptake or efflux) depended upon the timing and amount of precipitation. In early spring, both evapotranspiration (ET) and CO2 fluxes responded only slightly to precipitation pulses because soils were already moist from snowmelt and spring rains. As soils dried later in the spring, ET response to rainfall increased. The summer season was very warm and dry in both years, and both water and CO2 fluxes were generally reduced as compared to fluxes in the spring. Water vapor fluxes increased during and immediately after periodic summer rain events at all sites, especially at juniper, followed by the sagebrush and crested wheatgrass sites. Net CO2 exchange changed significantly at the juniper and sagebrush sites but changed very little at the crested wheatgrass site due to senescence of this grass. However, in the wetter summer of 2003, the grass species maintained physiological activity and responded to rain events. In the fall of both years, responses of ET and CO2 fluxes to precipitation were very similar for all three communities, with only small changes, presumably due to significantly lower temperatures in the fall. This research documents the importance of the temporal distribution of rainfall on patterns of ET and CO2 fluxes and suggests that soil moisture and stand-level leaf area index (LAI) are critical factors governing ET and CO2 responses to precipitation in these communities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call