Abstract

Abstract This paper reports on an analysis of the tropical cyclone (TC) potential intensity (PI) and its control parameters in transient global warming simulations. Specifically, the TC PI is calculated for phase 3 of the Coupled Model Intercomparison Project (CMIP3) integrations during the first 70 yr of a transient run forced by a 1% yr−1 CO2 increase. The linear trend over the period is used to project a 70-yr change in relevant model parameters. The results for a 15-model ensemble-mean climate projection show that the thermodynamic potential intensity (THPI) increases on average by 1.0% to ∼3.1% over various TC basins, which is mainly attributed to changes in the disequilibrium in enthalpy between the ocean and atmosphere in the transient response to increasing CO2 concentrations. This modest projected increase in THPI is consistent with that found in other recent studies. In this paper the effects of evolving large-scale dynamical factors on the projected TC PI are also quantified, using an empirical formation that takes into account the effects of vertical shear and translational speed based on a statistical analysis of present-day observations. Including the dynamical efficiency in the formulation of PI leads to larger projected changes in PI relative to that obtained using just THPI in some basins and smaller projected changes in others. The inclusion of the dynamical efficiency has the largest relative effect in the main development region (MDR) of the North Atlantic, where it leads to a 50% reduction in the projected PI change. Results are also presented for the basin-averaged changes in PI for the climate projections from each of the 15 individual models. There is considerable variation among the results for individual model projections, and for some models the projected increase in PI in the eastern Pacific and south Indian Ocean regions exceeds 10%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.