Abstract

Quantitative changes in foliar chemistry in response to UV-B radiation are frequently reported but less is known about the qualitative changes in putative UV-screening compounds. It has also not been conclusively shown whether qualitative differences in screening compounds or differences in localization patterns influence the sensitivity of plants to damage from UV-B radiation and there is some question as to whether differences in the amounts of soluble screening compounds correlate with physiological sensitivity to UV-B radiation. This study represents the first part of a multiple-year study designed to answer the above questions. In this study we evaluated whether differences in soluble UV-screening compounds were linked with possible effects on gas exchange and photosynthetic carbon assimilation. Branches of mature trees of sweet gum ( Liquidambar styraciflua), tulip poplar ( Liriodendron tulipifera) and red maple ( Acer rubrum) were exposed to supplemental levels of UV-B radiation over three growing seasons. Controls for UV-A were also measured by exposing branches to supplemental UV-A only and additional branches not irradiated were also used for controls. These species demonstrated differing levels of screening compounds with poplar being the most responsive in terms of epidermal accumulation of phenolics. These were separately identified as flavonols, chlorogenic acid and hydroxycinnamates (HCAs). Red maple had the highest levels of constitutive UV-absorbing compounds but these showed little response to supplemental UV-B radiation. Leaf area was marginally influenced by UV exposure level with both UV-A and UV-B tending to reduce leaf area in red maple and poplar and increase it in sweet gum, when averaged over the 3-year period. Assimilation was generally not reduced by UV-B radiation in these species and was enhanced in red maple by both UV-B and UV-A and by UV-A in sweet gum. These findings are consistent with a hypothesis that epidermal attenuation of UV-B would only be reduced in poplar, which accumulated the additional epidermal screening compounds. It is possible that photosynthetic efficiency was enhanced in red maple by the increased absorption of blue light within the mesophyll due to elevated levels of HCAs. Stomatal conductance was generally reduced and this led to an increase in water use efficiency (WUE) in red maple and poplar. Since few detrimental effects of supplemental UV-B were observed, these results suggest that these tree species utilized a range of UV-screening compounds and deposition patterns to achieve UV-B tolerance and further, that subtle responses to UV-B could have ecological significance in the absence of reduced productivity or photosynthetic efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call