Abstract

Abstract The present study deals with a homogeneous and isotopic micropolar porous thermoelastic circular plate by employing eigenvalue approach in the three phase lag theory of thermoelasticity due to thermomechanical sources. The expressions of components of displacements, microrotation, volume fraction field, temperature distribution, normal stress, shear stress and couple shear stress are obtained in the transformed domain by employing the Laplace and Hankel transforms. The resulting quantities are obtained in the physical domain by employing the numerical inversion technique. Numerical computations of the resulting quantities are made and presented graphically to show the effects of void, phase lags, relaxation time, with and without energy dissipation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call