Abstract

Plastic biodegradation by mealworm is regarded as an emerging strategy for plastic disposal. In this study, the polystyrene (PS) and low density polyethylene (LDPE) degradation efficiency by yellow mealworms (Tenebrio molitor larvae) supplemented with bran and the effects of plastics on the gut core microbiome were explored to construct a circular and continuous reactor for plastic biodegradation in the future. The gut microbiome was also investigated with dietary shift to explore the relationship between specific diets and gut microbes. The bran plus plastic (7:1 ratio, w/w) co-diet contributed to the mealworm survival and growth. The formation of −C˭O−/−C−O− groups in the plastic-fed mealworms frass represented the oxidation process of plastic biodegradation in the mealworm gut. The changes in molecular weights (Mw, Mn and Mz) of residual PS and LDPE in mealworms frass compared with that of PS and PE feedstock confirmed the plastic depolymerization and biodegradation. Lactobacillus and Mucispirillum were significantly associated with PE + bran diet compared to bran diet and PE diet, representing the response of mealworm gut microbiome to the bran and plastic mixture was distinguished from either bran or plastics alone. The gut microbiome changed substantially with the diet shift, indicating that microbial community assembly was a stochastic process and diverse plastic-degrading bacteria might occur in the mealworm gut.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call