Abstract

AbstractThe positive trend of the Southern Annular Mode (SAM) will impact the Southern Ocean's role in Earth's climate; however, the details of the Southern Ocean's response remain uncertain. We introduce a methodology to examine the influence of SAM on the Southern Ocean and apply this method to a global ocean‐sea ice model run at three resolutions (1°, (1/4)°, and (1/10)°). Our methodology drives perturbation simulations with realistic atmospheric forcing of extreme SAM conditions. The thermal response agrees with previous studies; positive SAM perturbations warm the upper ocean north of the wind speed maximum and cool it to the south, with the opposite response for negative SAM. The overturning circulation exhibits a rapid response that increases/decreases for positive/negative SAM perturbations and is insensitive to model resolution. The longer‐term adjustment of the overturning circulation, however, depends on the representation of eddies, and is faster at higher resolutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.