Abstract

Crop straw is an important agricultural source, which can replace chemical fertilizers. A field experiment with six different amounts of fertilization combined with maize straw residues was carried out in purple soil, including the control (CK), conventional fertilizing (F), straw return with conventional fertilizing (100FS), straw return with 70% conventional fertilizing (70FS), straw return with 60% conventional fertilizing (60FS), and straw return with 50% regular fertilizing (50FS), to determine the response of the soil N2O emission and ammonia-oxidizing microorganism community distribution to straw return with reducing fertilizer. The dynamic characteristics of the N2O emission in purple soil were observed using an in situ closed chamber and gas chromatography-based system. The ammonia-oxidizing microorganism community distribution was analyzed with multiple molecular techniques (DNA-based clone library and qPCR) linked to physical-chemical soil properties. The results show that the combination of straw with fertilizer increases the N2O emission and cumulative N2O emission. The highest N2O emission[57.59-6238.02 μg·(m2·h)-1]and cumulative N2O emission (60.76 kg·hm-2) were observed for the 100FS treatment. Compared with the F treatment, the soil ammonium nitrogen and nitrate nitrogen contents are reduced and the soil organic matter increases after crop straw return with chemical fertilizer. However, significant changes of the soil total nitrogen and pH were not observed. The bacterial ammonia oxidizer (AOB) amoA gene abundance is higher than that of the archaeal ammonia oxidizer (AOA). The AOA amoA gene abundance during F treatment (50.9×103 copies·g-1) is significantly higher than that of others, while the AOB amoA abundance gene of the F treatment is the lowest (1.36×105 copies·g-1). The 100FS reduces the community diversity and Pielou index of AOA and AOB amoA gene. Their amoA gene abundance significantly declines during 100FS treatment. However, the increment of the AOA and AOB amoA gene diversity and dominant increment of AOB amoA gene abundance are significant when applying straw with reducing fertilizer. The specific AOA indicator OTU1 may be most important with respect to the direct and indirect production of N2O in purple soil. The redundancy analysis (RDA) shows that the community structure of AOA is remarkably relevant to the soil ammonium nitrogen, organic matter, and available phosphorus (P<0.05) and that the community structure of AOB is remarkably relevant to the soil dissolved organic nitrogen, total nitrogen, available potassium, and available phosphorus (P<0.05). The tolerance to different environments and ecological niches of AOB is weaker than that of AOA. Our results illustrate that the maize straw return with 60%-70% regular fertilizing dramatically increases the community diversity and abundance of the AOA and AOB amoA genes and partly mitigates the soil N2O emission without significantly decreasing the vegetable yields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call