Abstract

We investigate an ambiguity in the current understanding of the Gulf Stream (GS) transport in response to the North Atlantic Oscillation (NAO). While some investigations (discussed herein) suggest enhanced transport during low NAO phases, other studies suggest enhanced transport in high NAO phases. NAO-induced variability in the western North Atlantic is studied by using a 1/6°-resolution basin-scale Regional Ocean Modeling System (ROMS) model. Results indicate that the western boundary current limb of the GS, upstream of Cape Hatteras, exhibit enhanced transport during low-NAO phases. However, further downstream of Cape Hatteras, after the GS separates from the coast, diminished GS transport is seen during low-NAO phases. The converse is true for high NAO phases for both segments of the GS system. Model results show the Deep Western Boundary Current (DWBC), the northern recirculation gyre and the southern recirculation gyre intensify (weaken) during the high (low) NAO periods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call