Abstract

Habitat fragmentation and degradation seriously threaten native animal communities. We studied the response of a small marsupial, the agile antechinus Antechinus agilis, to several environmental variables in anthropogenically fragmented Eucalyptus forest in south-east Australia. Agile antechinus were captured more in microhabitats dominated by woody debris than in other microhabitats. Relative abundances of both sexes were positively correlated with fragment core area. Male and female mass-size residuals were smaller in larger fragments. A health status indicator, haemoglobin-haematocrit residuals (HHR), did not vary as a function of any environmental variable in females, but male HHR indicated better health where sites' microhabitats were dominated by shrubs, woody debris and trees other than Eucalyptus. Females were trapped less often in edge than interior fragment habitat and their physiological stress level, indicated by the neutrophil/lymphocyte ratio in peripheral blood, was higher where fragments had a greater proportion of edge habitat. The latter trend was potentially due to lymphopoenia resulting from stress hormone-mediated leukocyte trafficking. Using multiple indicators of population condition and health status facilitates a comprehensive examination of the effects of anthropogenic disturbances, such as habitat fragmentation and degradation, on native vertebrates. Male agile antechinus' health responded negatively to habitat degradation, whilst females responded negatively to the proportion of edge habitat. The health and condition indicators used could be employed to identify conservation strategies that would make habitat fragments less stressful for this or similar native, small mammals.

Highlights

  • IntroductionIn studies examining habitat fragmentation and degradation effects on animals there has been a tendency to rely on distribution metrics (e.g. occurrence, abundance, density), without much reference to performance indices (e.g. litter size, survivorship, physiological stress)

  • In studies examining habitat fragmentation and degradation effects on animals there has been a tendency to rely on distribution metrics, without much reference to performance indices

  • T-value and P-values are shown for variables that were selected for inclusion in the reduced linear mixed effect models (LMEM) using Akaike Information Criterion. doi:10.1371/journal.pone.0027158.t006

Read more

Summary

Introduction

In studies examining habitat fragmentation and degradation effects on animals there has been a tendency to rely on distribution metrics (e.g. occurrence, abundance, density), without much reference to performance indices (e.g. litter size, survivorship, physiological stress). Fletcher et al [1] noted that in 194 studies of fragment edge and area effects on vertebrates, distribution metrics were almost three times as common as performance indices, despite earlier authors suggesting that understanding how environmental factors limit a population or species’ range requires examination of population densities and at least one index of well-being (fecundity, parasite load, body condition, growth rate etc.) [2]. Decline and extinction of vertebrate populations in fragmented habitat is variously attributed to habitat change (loss, degradation, edge effects and isolation), altered species interactions (predation, parasitism etc.), changed behaviour (edge avoidance, disrupted dispersal, social relationships or resource-tracking), altered physiology (poor body condition and chronic physiological stress) and stochastic threats associated with small population size [1,3,4,5]. The relative importance of the putative agents of population decline remain unclear and probably vary among taxa and landscapes [3].

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.