Abstract

ObjectiveDuring enamel formation, transforming growth factor-beta (TGF-β) isoforms exhibit different activities for gene expression, apoptosis, and endocytosis. This study aimed to investigate the differential response of TGF-β isoforms to epithelial-mesenchymal transition (EMT) in enamel epithelial cells. DesignUsing a mouse enamel epithelial cell line (mHAT9d) cultured in the presence of each TGF-β isoform, (1) the morphological changes in EMT were explored, (2) EMT-related genes were analyzed by next-generation sequencing (NGS), (3) TGF-β pathway for EMT was identified by inhibition experiments, and (4) the expression of the TGF-β receptor gene in response to the binding affinity of the TGF-β isoform were analyzed. ResultsEMT was observed in mHAT9d cultured in the presence of TGF-β1 and β3 but not TGF-β2. The expression of both epithelial and mesenchymal marker genes was observed in mHAT9d exhibiting EMT. NGS analysis suggested extracellular signal-regulated kinase (ERK) and Rho pathways as TGF-β signaling pathways associated with EMT. However, EMT in mHAT9d cultured in the presence of TGF-β1 or β3 occurred even in presence of an ERK1/2 inhibitor and was suppressed by Rho-kinase inhibitor. The expression of co-receptors for TGF-β signaling in mHAT9d cells reduced following stimulation with each TGF-β isoform. In contrast, endoglin levels increased following TGF-β1 or β3 stimulation, but no change was noted in response to TGF-β2. ConclusionsWe propose that in TGF-β-stimulated enamel epithelial cells, EMT mainly occurred via the Rho signaling pathway, and the differences in response across TGF-β isoforms were due to their endoglin-mediated binding affinity for the TGF-β receptor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call