Abstract

To examine the androgen response to exercise in women under conditions of high (H) and low (L) estrogen (E2) levels. Ten exercise trained eumenorrheic women (mean ± SD: 20.0 ± 2.2 years, 58.7 ± 8.3 kg, 22.3 ± 4.9 % body fat, VO2max = 50.7 ± 9.0 mL/kg/min) completed a 60 min treadmill run at ~70 % of VO2max during both the mid-follicular (L-E2, 69.7 ± 7.3 % VO2max) and mid-luteal (H-E2, 67.6 ± 7.9 % VO2max) phases of their menstrual cycle. Blood samples were taken pre-exercise (PRE), immediately post (POST), and 30 min into recovery (30R) from exercise and analyzed for total testosterone using ELISA assays. Results were analyzed using repeated measures ANOVA. Testosterone responses were (mean ± SD: L-E2, pre = 1.41 ± 0.21, post = 1.86 ± 0.21, 30R = 1.75 ± 0.32 nmol/L; H-E2, pre = 1.27 ± 0.23, post = 2.43 ± 0.56, 30R = 1.69 ± 0.34 nmol/L). Statistical analysis indicated no significant interaction existed between high and low estrogen conditions across the blood sampling times (p = 0.138). However, a main effect occurred for exercise (p < 0.004) with the post-testosterone concentration being greater than pre, although pre vs. 30R was not different (p > 0.05). All testosterone hormonal concentrations immediately post-exercise greatly exceeded the level of hemoconcentration observed during the L-E2 and H-E2 exercise sessions. Prolonged aerobic exercise induces short-term elevations in testosterone in trained eumenorrheic women, which appears unrelated to estrogen levels and menstrual cycle phase. These increases may occur due to either increased androgen production and/or decreased degradation rates of the hormone, and are not solely the result of plasma fluid shifts from the exercise.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.