Abstract
<p>During the COVID-19 pandemic, the first lockdown period (March-May 2020) has led to an unprecedented reduction in pollutant emissions. For 3⁄4 of the more than 1,100 available monitoring stations in Europe, the average NO2 concentrations decreased by at least 25% (2.7 μg.m-3) compared to the average concentrations recorded during the same period of the previous seven years. The relative reduction was of similar magnitude in both urban and rural areas.</p><p>We further investigate the spatial distribution of the O3 change. Relative to the seven years average, positive anomalies were observed in northern Europe and negative anomalies in southwestern Europe. However, the level of total oxidant (Ox = O3 + NO2) remained unchanged except in southwestern Europe where it decreased.</p><p>At the global scale, the ozone concentration increased only in a few NOx-saturated regions. After presenting data from monitoring stations in Europe, we analyze the drivers of the change in surface ozone concentrations using the global Community Earth System Model. We contrast global simulations of the atmospheric composition with and without lockdown adjusted anthropogenic emissions for the COVID-19 period.</p><p>By comparing the situation in Europe with that of the United States and China, we show that the reduced cloudiness in northern Europe played a significant role by shifting the photochemical partitioning between NO2 and O3 toward more ozone, while in the North China Plain, enhanced ozone concentrations resulted primarily from reduced emissions of primary pollutants.</p><p>These results illustrate the complexity of the processes affecting ozone in the troposphere and hence the difficulty of implementing efficient regulations targeting air quality impacts.</p>
Highlights
OSA1.3 : Meteorological observations from GNSS and other space-based geodetic observing techniques OSA1.7: The Weather Research and Forecasting Model (WRF): development, research and applications
OSA3.5: MEDiterranean Services Chain based On climate PrEdictions (MEDSCOPE)
UP2.1 : Cities and urban areas in the earth- OSA3.1: Climate monitoring: data rescue, atmosphere system management, quality and homogenization 14:00-15:30
Summary
OSA1.3 : Meteorological observations from GNSS and other space-based geodetic observing techniques OSA1.7: The Weather Research and Forecasting Model (WRF): development, research and applications. EMS Annual Meeting Virtual | 3 - 10 September 2021 Strategic Lecture on Europe and droughts: Hydrometeorological processes, forecasting and preparedness Serving society – furthering science – developing applications: Meet our awardees ES2.1 - continued until 11:45 from 11:45: ES2.3: Communication of science ES2.2: Dealing with Uncertainties
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.