Abstract

The methodologies recommended by existing codes and standards for design of steel catenary risers are considering linear springs in the seabed while it is publicly accepted that the non-linear riser-seabed interaction can have vital influence on stress variation in touchdown area and consequently fatigue performance during the cyclic motions of the riser as the latter is excited by vessel motions under environmental loads. In this study an advanced hysteretic non-linear riser-seabed interaction model has been implemented into the seabed enabling the automatic simulation of different stiffness in the seabed response through the touchdown zone and gradual embedment of riser. Then the impacts of this model on fatigue calculation procedure and fatigue performance in touchdown area has been studied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.