Abstract

The northern part of the South China Sea is a complex ocean environment with a large range of tidal waves and the stable Luzon cold eddy, which significantly influence the sound propagation characteristics through their impact on sound speed. This study uses a 3D ocean-acoustic framework consisting of MITgcm and BELLHOP ray model to investigate the coupled effects of the Luzon cold eddy and tidal waves. Firstly, the model incorporates tidal assimilation to reconstruct the hydrographic field and compute the sound speed field. Subsequently, the sound propagation in a representative region in the northern South China Sea is simulated to compare the response of sound propagation characteristics to the Luzon cold eddy only, tide only, and the coupled effect of both. The results demonstrate that the cold eddy shifts the location of the convergence zone forward by over 5 km at most. Further, it also makes the acoustic energy focus on the first few arrivals and delays the arrival time of rays by about 0.1 s. The tidal waves intensify these effects, resulting in a further increase of the forward distance of the convergence zone by 2-5 km and a delay in arrival time by 0.02 s. Sound propagation in the coupled influence of these two dynamic processes is exposed to steady perturbations from the cold eddy and spatial-temporal perturbations from tidal waves. The model in this study provides valuable insight for underwater detection and positioning in the realistic ocean environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.