Abstract

Salinity is one of the major constraints for crop production across the world. Saudi Arabia is dominated with desert environment with high salinity in the central region of the country. Therefore, salinity has a limiting factor for cereal crops in this region. The objective of this study was to assess the productivity and quality characters for some wheat (Triticum aestivum L) genotypes under different salinity levels of Irrigated water (control, 4000, 8000 ppm NaCl). The experiment was conducted during 2011 and 2012 seasons. The trial was conducted under greenhouse environmental condition at Qassim University Agricultural Research and Experimental Station during 2011 and 2012 seasons. Twenty wheat genotypes including: 5 genotypes from ICARDA, 7 genotypes from Pakistan, 5 Australian genotypes, one American genotype (Yocora Rojo), one Egyptian genotype (Sakha 93) and one local genotype (Sama) were used in this study. Results from wheat genotype trial showed a significant difference (p<0.05) for all traits due to increased salinity in irrigation water from 4000 to 8000 ppm. There was a significant difference between the varieties for plant height, 1000-kernel weight, number of kernels spike-1 and Na for grain and straw. The interaction effect was significant in number of spikes, 1000-kernel weight and Na for grain and hay and Na / K cereal. The results showed that Auqab 2000, Bhan 2000 and Shaka 93 have the highest yield at high level of salt and Sis 13, P2 and Local were the least in yield. Moreover, the results of principle component analysis (PCA) indicated that the superior wheat genotypes for grain yield under salt stress in the two seasons (Auqab 2000, Bhan 2000, Yocara Rojo and Sakha 93) are clustered in group D. These genotypes can be considered as salinity resistant varieties. The maximum reduction over control under salt stress was recorded in Australian genotypes (P6 and P9) and local genotype 'Sama'.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.