Abstract
The ultrafast geometrical rearrangement dynamics of NO doped cryogenic Ne matrices after femtosecond laser pulse excitation is studied using a quantum dynamical approach based on a multi-dimensional shell model, with the shell radii being the dynamical variables. The Ne-NO interaction being only weakly anisotropic allows the model to account for the main dynamical features of the rare gas solid. Employing quantum wave packet propagation within the time dependent Hartree approximation, both, the static deformation of the solid due to the impurity and the dynamical response after femtosecond excitation, are analysed. The photoinduced dynamics of the surrounding rare gas atoms is found to be a complex high-dimensional process. The approach allows to consider realistic time-dependent femtosecond pulses and the effect of the pulse duration is clearly shown. Finally, using the pulse parameters of previous experiments, pump-probe signals are calculated and found to be in good agreement with experimental results, allowing for a clear analysis of the ultrafast mechanism of the energy transfer into the solid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.