Abstract

Forest ecosystems on the Loess Plateau are receiving increasing attention for their special importance in carbon fixation and conservation of soil and water in the region. Soil respiration was investigated in two typical forest stands of the forest–grassland transition zone in the region, an exotic black locust ( Robinia pseudoacacia) plantation and an indigenous oak ( Quercus liaotungensis) forest, in response to rain events (27.7 mm in May 2009 and 19 mm in May 2010) during the early summer dry season. In both ecosystems, precipitation significantly increased soil moisture, decreased soil temperature, and accelerated soil respiration. The peak values of soil respiration were 4.8 and 4.4 μmol CO 2 m −2 s −1 in the oak plot and the black locust plot, respectively. In the dry period after rainfall, the soil moisture and respiration rate gradually decreased and the soil temperature increased. Soil respiration rate in black locust stand was consistently less than that in oak stand, being consistent with the differences in C, N contents and fine root mass on the forest floor and in soil between the two stands. However, root respiration ( R r) per unit fine root mass and microbial respiration ( R m) per unit the amount of soil organic matter were higher in black locust stand than in oak stand. Respiration by root rhizosphere in black locust stand was the dominant component resulting in total respiration changes, whereas respiration by roots and soil microbes contributed equally in oak stand. Soil respiration in the black locust plantation showed higher sensitivity to precipitation than that in the oak forest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.