Abstract

Land-use change (LUC) is widely considered a major factor that affects soil organic carbon (SOC) sequestration. The impacts of four LUC types on soil properties, SOC, particulate organic carbon (POC) and labile organic carbon (LOC) at the 0–100 cm depth were examined in the west of Loess Plateau, northwest China. Bulk density at the 20–40 cm depth increased significantly after native grassland conversion to cropland, while artificial grassland establishment and abandonment on former cropland caused reverse change. Soil water content in the profile increased 60–230% after cultivation and decreased 32–49% after abandonment (p < 0.01). The particle size distribution also showed a response to LUC. Only artificial grassland establishment caused an SOC sink of 32% at the 0–10 cm depth as well as two labile fractions. SOC tended to increase after cultivation and after abandonment, with 6% and 20% at soil surface, respectively. There were increasing trends in POC and LOC. After afforestation on former native grassland, SOC tended to decrease (23%) at the 0–10 cm depth while POC and LOC tended to increase (33% and 6%, respectively). Principal component analysis was successful in separating LUC through soil property parameters. Carbon sequestration is largely ascribed to increased below-ground production and tillage elimination after perennial alfalfa (Medicago sativa L.) plantation. Irrigation and fertilization activities contribute to SOC accumulation after cultivation to some extent. The self-restoration dynamic depending on time since abandonment is important to SOC change. A lower proportion of stabilized carbon results in a slow rate of SOC accumulation after afforestation. It is necessary to investigate the long-term dynamic after LUC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call