Abstract

Kiwifruit bacterial canker caused by Pseudomonas syringae pv. actinidiae (Psa) is a major threat to kiwifruit worldwide, and effective control measures are still lacking. Sulfur, as a mineral, has been proved to improve plants' resistance to pathogens. It is of great significance to study the effect of sulfur on rhizosphere microorganisms in kiwifruit planting areas infected by Psa for controlling kiwifruit canker. In this study, the sulfur powder and organic fertilizer were mixed as base fertilizer to treat the soil in the area where kiwifruit bacterial canker occurs. We investigated the incidence of kiwifruit bacterial canker in 2018 and 2019 after sulfur application and the changes in microbial characteristics and community composition structure in the kiwifruit rhizosphere by using the plate-counting method and high-throughput sequencing technology. Fertilization treatments of kiwifruit roots with sulfur and organic fertilizer reduced kiwifruit bacterial canker severity. The diversity of soil microbial communities increased significantly after sulfur application in the range of 1.0~2.0 kg/m3. In particular, the bacterial genera level showed a high diversity after 2 years of sulfur application, reaching more than 516 genera. Furthermore, sulfur treatment resulted in a significant increase in specific microbial taxa, including members of the Acidothermus, norank_f__HSB_OF53-F07, and norank_f __Acidobacteriaceae__Subgroup_1. Moreover, the proportion of the dominant bacteria Acidothermus in the population showed an increasing trend. Altogether, the sulfur application is the key factor leading to microbial differences in kiwifruit rhizosphere soil. Appropriate sulfur can improve microbial structure characteristics of kiwifruit rhizosphere soil, increase bacterial diversity index, and change bacterial community composition structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call