Abstract

ABSTRACTLand-use conversion affects the soil community and microbial abundance, which are essential dynamic indicators of soil quality and sustainability. However, little to no work has been performed to analyse the impact from different land-use histories (i.e. fallow, tea, rice, banana, and maize) on the microbial abundance and diversity in the soil of sacha inchi (Plukenetia volubilis L.). Real-time quantitative PCR (qPCR) was performed to quantify soil bacterial and fungal abundance. Denaturing gradient gel electrophoresis (DGGE) combined with cloning and sequencing was used to assess the microbial communities. Our results showed that the bacterial and fungal abundance in fallow land-use conversion soils was significantly lower than that in the other four land-use conversion soils (tea, rice, banana, and maize). Moreover, the highest abundance of bacteria and fungi was detected in the soils converted from maize to sacha inchicultivation. In addition, canonical correspondence analysis (CCA) showed that the total N and pH were significantly related to bacterial and fungal community structures. These results suggest that land-use conversion from maize fields to sacha inchi farms is an effective way to maintain the soil microbial quantity and hence the sustainability of the soil.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call