Abstract

Soil organic carbon (SOC) and microbial biomass carbon (MBC) are highly correlated with enzyme activities. Specific enzyme activities can exclude the autocorrelation between enzyme activity and SOC and MBC. However, the responses of absolute and specific enzyme activities to saline–alkali properties remains unclear. In this study, the absolute and specific enzyme activities of cellobiose hydrolase, β-glucosidase, arylsulfatase, alkaline phosphatase, and urease were measured in soils with 10, 15, 18, 21, and 26 years of organic fertilizer application in contrast to soils without organic fertilizer application. The results showed that long-term organic fertilizer application led to significantly increased in the absolute and specific enzyme activity and decrease in pH, electrical conductivity (EC), exchangeable sodium percentage (ESP), as well as sodium adsorption ratio (SAR5:1). In the structural equation model (SEM), the EC extremely limited the geometric mean of specific enzyme activity per unit of MBC (MBC-GMSEA) (path coefficient, −0.84, p < 0.001). Pearson’s correlation analysis showed that the correlations between EA/MBC and pH, EC, ESP, and SAR5:1 were higher than between the absolute soil enzyme activity and pH, EC, ESP, and SAR5:1. Of the parameters tested, EA/MBC was a more sensitive index to reflect the improvement effect of organic fertilizer on soils and evaluate the saline–alkali barrier.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.