Abstract

Whereas normal human and monkey cells were susceptible both to intact simian virus 40 (SV40) and to SV40 deoxyribonucleic acid (DNA), human and monkey cells transformed by SV40 were incapable of producing infectious virus after exposure to SV40, but displayed susceptibility to SV40 DNA. On the other hand, mouse and hamster cells, either normal or SV40-transformed, were resistant both to the virus and to SV40 DNA. Hybrids between permissive and nonpermissive parental cells revealed a complex response: whereas most hybrids tested were resistant, three of them produced a small amount of infectious virus upon challenge with SV40 DNA. All were resistant to whole virus challenge. The persistence of infectious SV40 DNA in permissive and nonpermissive cells up to 96 hr after infection was ascertained by cell fusion. The decay kinetics proved to be quite different in permissive and nonpermissive cells. Adsorption of SV40 varied widely among the different cell lines. Very low adsorption of SV40 was detected in nonsusceptible cells with the exception of the mKS-BU100 cell line. A strong increase in SV40 adsorption was produced by pretreating cells with polyoma virus. In spite of this increased adsorption, the resistance displayed by SV40-transformed cells to superinfection with the virus was maintained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.